Saturday, April 01, 2006

Some solution paradigms for acm problems...

Here is some things that you need to consider when designing your solution :)

Generating vs Filtering
Programs that generate lots of possible answers and then choose the ones that are correct (imagine an 8-queen solver) are filters. Those that hone in exactly on the correct answer without any false starts are generators. Generally, filters are easier (faster) to code and run slower. Do the math to see if a filter is good enough or if you need to try and create a generator.

Pre-Computation / Pre-Calculation
Sometimes it is helpful to generate tables or other data structures that enable the fastest possible lookup of a result. This is called Pre-Computation (in which one trades space for time). One might either compile Pre-Computed data into a program, calculate it when the program starts, or just remember results as you compute them. A program that must translate letters from upper to lower case when they are in upper case can do a very fast table lookup that requires no conditionals, for example. Contest problems often use prime numbers - many times it is practical to generate a long list of primes for use elsewhere in a program.

Decomposition (The hardest thing at programming contests)
While there are fewer than 20 basic algorithms used in contest problems, the challenge of combination problems that require a combination of two algorithms for solution is daunting. Try to separate the cues from different parts of the problem so that you can combine one algorithm with a loop or with another algorithm to solve different parts of the problem independently. Note that sometimes you can use the same algorithm twice on different (independent!) parts of your data to significantly improve your running time.

Many problems have symmetries (e.g., distance between a pair of points is often the same either way you traverse the points). Symmetries can be 2-way, 4-way, 8-way, and more. Try to exploit symmetries to reduce execution time.
For instance, with 4-way symmetry, you solve only one fourth of the problem and then write down the four solutions that share symmetry with the single answer (look out for self-symmetric solutions which should only be output once or twice, of course).

Solving forward vs backward
Surprisingly, many contest problems work far better when solved backwards than when using a frontal attack. Be on the lookout for processing data in reverse order or building an attack that looks at the data in some order or fashion other than the obvious.

Simplification or in technical terms: Problem Reduction
Some problems can be rephrased into a somewhat different problem such that if you solve the new problem, you either already have or can easily find the solution to the original one; of course, you should solve the easier of the two only. Alternatively, like induction, for some problems one can make a small change to the solution of a slightly smaller problem to find the full answer.

References:-. USACO training gateway

No comments: